
High Performance Graphics (2016)
Ulf Assarsson and Warren Hunt (Editors)

SVGPU: Real Time 3D Rendering to Vector Graphics Formats

Apollo I. Ellis† and Warren Hunt‡ and John C. Hart†

Abstract

We focus on the real-time realistic rendering of a 3-D scene to a 2-D vector image. There are several application domains which
could benefit substantially from the compact and resolution independent intermediate format that vector graphics provides. In
particular, cloud streaming services, which transmit large amounts of video data and notoriously suffer from low resolution
and/or high latency. In addition, display resolutions are growing rapidly, exacerbating the issue. Raster images for large dis-
plays prove a significant bottleneck when being transported over communication networks. However the alternative of sending
a full 3D scene worth of geometry is even more prohibitive. We implement a real time rendering pipeline that utilizes analytic
visibility algorithms on the GPU to output a vector graphics representation of a 3D scene. Our system SVGPU (Scalable Vector
on the GPU) is fast and efficient on modern hardware, and simple in design. As such we are making a much needed step towards
enabling the benefits of vector graphics representations to be reaped by the real time community.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Hidden line/surface removal

1. Introduction

In the earliest days of computer graphics, the VRAM needed for
a raster framebuffer was prohibitively expensive, and graphics was
output in a vector format. Hidden line algorithms were needed to
convert 3-D scene geometry into a planar map of view projected re-
gions with depth a complexity of one, so their outlines could be dis-
played on the vector display devices available then. While today’s
platforms have ample VRAM, we nevertheless find many modern
reasons to explore vector rendering of 3-D meshes into a planar
map consisting only of the visible portions of its triangles.

We propose SVGPU, a GPU-optimized real-time vector image
rendering system that renders a 3-D scene into a resolution inde-
pendent vector image, a planar map consisting only of visible poly-
gons. This intermediate-stage output with its proper visibility deter-
mination has several advantages over the typical final-stage raster
image of visible pixels that relies on the z-buffer. Vector images
provide a resolution independent representation that can be effi-
ciently rasterized at any resolution onto an arbitrarily sized display,
ranging from watches to videowalls to head-mounted displays, and
as shown in Fig. 2 can include per-pixel texturing and shading. The
rasterization of a planar map consists of only point-in-polygon tests
(which modern GPU’s can efficiently compute) and avoids the need
to sort depth, and so does not suffer the pathological issues of depth
buffering, c.f. [LJ99].

† University of Illinois at Urbana-Champaign
‡ Oculus Research

Figure 1: A toon shaded
Stanford bunny of 70K
triangles rendered as a
resolution-independent pla-
nar map of visible triangle
portions (depth complexity is
no greater than one) in about
15 ms (67 Hz) by the SVGPU
vector renderer, represent-
ing more than a four-fold
improvement over previous
GPU vector renderers.

There are several specific modern computer graphics applica-
tions that would benefit from a modern real-time GPU version of
a vector image renderer that generates a planar map of unit depth
complexity triangles.

Some modern GPU’s, in particular the PowerVR GPU’s found
in mobile devices, utilize tile-based deferred rendering (TBDR)
[Lau10, Sol15]. The TBDR pipeline decomposes primitives af-
ter the per-vertex transform-and-lighting stages of the graphics
pipeline into screen tile elements. On a per-tile bases, an early
visibility test becomes feasible either through primitive sorting
or ray casting, to eliminate unnecessary texture fetches and frag-
ment shading calls for occluded fragments. Our SVGPU approach
employs Robert’s algorithm [Rob63] and silhouette clipping effi-
ciently on a per-tile basis to offer an alternative approach for the
early visibility test in TBDR to reduce rasterization pipeline work.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



A. Ellis et al. / SVGPU

Figure 2: A vector image of an environment-mapped Utah teapot.
The SVGPU renderer outputs a resolution-independent vector im-
age as a planar map consisting only of visible screen triangles.
The vertices of these screen triangles include properly interpolated
attribute data including texture coordinates, such that a rasterizer
can texture and shade its primitives at whatever raster resolution is
desired, even variable resolutions for a foveated display.

In an era where network bandwidth is a critically valuable com-
modity, vector images are compact, reducing both network con-
sumption and latency. Cloud gaming is an emerging trend of the
video gaming industry, where the display image of a video game is
rendered by a server and transmitted over the internet to the client.
Current gaming-as-a-service (GaaS) systems render raster images
that are transmitted as MPEG streams, but these streams consist of
full resolution I-frames because the computation of block motion
on these raw images needed for more efficient MPEG transmission
creates too much latency and would require prediction since the
streams are not static. In fact a server rendering 3-D game scenes di-
rectly to a planar map could also yield correspondences that would
better support motion for more efficient game video transmission.

With the advent of lower power mobile VR, such as Samsung
Gear VR and Google Cardboard, VR is becoming a more avail-
able, mainstream technology. However, these low power devices
lack the capability to render complex scenes with lots of geometry,
and benefit from the same advantages of SVGPU as do other cloud
gaming clients. More advanced VR head-mounted displays can uti-
lize eye tracking [Mas15] to support foveated rendering [GFD∗12]
which renders the portion of the screen an observer is looking at, at
a significantly higher resolution than the remainder of the screen.
The vector image output by the SVGPU renderer is resolution in-
dependent such that a variable-resolution rasterizer could then scan
convert its foveated primitives (or tiles) at a higher resolution than
its peripheral primitives/tiles.

In this paper we present a real-time triangle-based vector ren-
derer that converts a 3-D meshed scene into a planar map of 2-D
triangles. This result can be directly converted into a vector graph-
ics representation (e.g. SVG). Or it can shipped across a network
interface and quickly rasterized on a client system without need for
a depth buffer and with display-resolution-dependence.

Our pipeline consists of five stages described in Section 3. The

first stage performs transform, clipping, and binning operations,
which is borrowed directly from the rasterization pipeline, and we
make no noteworthy additions to these operations. The next three
stages form the main contribution of the analytic visibility pipeline.
The second stage, described in Section 3.1 performs silhouette ex-
traction using GPU spatial hashing to quickly find neighboring
frontfacing-backfacing triangle pairs with a linear sweep through
the mesh. The third stage described in Section 3.2 clips triangles to
the extracted silhouette edges, limited to the geometry in each bin,
using GPU dynamic parallelism to better balance load across bins
representing different amounts of geometry. This silhouette clip-
ping of triangles allows the fourth stage described in Section 3.3
to simply cull triangles if any occlusion is detected, which is a
quadratic-time comparison between all-pairs of triangles in a bin.
The fifth stage of our system outputs the result, either as a vector
representation or the planar map of triangular regions.

The design of our vector renderer is based on the idea that we
use the same spatial coherence and streamed processing tricks as
those developed for fast rasterization graphics pipelines, replacing
the rasterization phase with anaylitic visibility. We evaluate perfor-
mance in Section 4.

2. Previous Work

The hidden line problem was well studied decades ago [SSS74].
Most modern approaches have been based on Appel’s algorithm
[App67] which extracts continuous silhouette components to dis-
play, computing the quantitative invisibility as these components
cross each other. The main benefit of Appel’s algorithm is that
once the silhouette is extracted (after a linear pass through the
scene polygons), the polygons no longer need to be processed, and
comparisons only need to occur along the silhouette edges, signif-
icantly reducing computation. The main drawback is that the mesh
silhouette is plagued with special cases, including cusps, switch-
backs and non-transverse intersections that can affect robustness.
Our approach clips triangles instead of the silhouette to the silhou-
ette edges, and does not require the silhouette edges to be connected
into a continuous curve for fragile incremental visibility computa-
tion.

Robert’s algorithm is an even older approach that simply com-
pares all pairs of scene polygons, clipping and culling occluded
portions of polygons [Rob63]. These all-pairs comparisons were
slightly reduced using bounding boxes, but still resulted in a
quadratic time complexity, but also a significantly more robust
output than Appel’s algorithm. Our SVGPU approach leverages
this robustness, and further reduces the impact of quadratic all-
pairs triangle occlusion comparisons through binning and clipping
only against silhouette edges. It also maps better to the brute force
streaming parallelism offered by modern GPU’s than does Appel’s
algorithm.

A large number of non-photorealistic rendering systems have
included renderers that convert a 3-D scene into 2-D planar map
[WS94, HZ00, Geu03, SEH08, EWHS08, EPD09, KH11], but these
have largely been offline CPU programs that focused on the quality
of the output. Some have looked at the real-time non-photorealistic
rendering (NPR), e.g. by fast (sublinear) statistical global searches

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



A. Ellis et al. / SVGPU

transform
binning
clipping

silhouette
edge

extraction

triangle
sil. edge
clipping

triangle
triangle

occlusion
display

line
art

world
space
mesh

window
mesh
bins

ordinary
vertex processing

analytic
visibility

planar
map

AA
pixels

Figure 3: The stages of our binned vector graphics rendering system.

for seed segments of the silhouette [MKG∗97], instead of our
linear-time spatial hash approach to silhouette extraction. A va-
riety of other techniques have also been employed to accelerate
NPR rendering based on actual silhouette edges [BS00, KB05]
or their approximation [RC99]. Some have also developed hard-
ware solutions for real-time NPR contour extraction [Ras01,HK04,
WSC∗05].

The GPU has been used to compute the high-quality visibility
of stylized lines by using a texture atlas as an intermediate frame
buffer for compositing [CF09], but the actual visibility is based here
on the depth buffer. The GPU was also used for analytic visibility
of polygons, using an edge-based approach [AWJ13], whereas our
approach is triangle based, using the silhouette edges only for clip-
ping to yield better performance results.

3. The SVGPU Pipeline

The input to our pipeline is a 3-D scene of triangles. While our im-
plementation uses an indexed face set representation, we do not re-
quire any particular organization, and our approach will work well
with triangle soup. We do not require the meshes to be manifold,
but any non-manifold or boundary edges will be classified as sil-
houette edges which are more expensive than manifold edges. In
order to streamline our clipping and occlusion processes, we do
require non-penetrating geometry, such that the only intersections
between two triangles can occur along a shared edge, so scenes
such as the Utah teapot would require re-tessellation.

The first stage of our pipeline performs the ordinary vertex pro-
cessing pipeline found in common rasterization systems, such as
OpenGL. This stage transforms world-space triangles into a per-
spective viewed “window” coordinate system. The triangles are
then organized and rectangle-clipped into a 2-D grid of silhouette
clipping bins organized across the window. As detailed in the fol-
lowing subsections, we extract the silhouette edges from the mesh,
and clip the mesh triangles to these silhouette edges. Then an oc-
clusion test can determine on a per-triangle basis, which triangles
are visible, yielding a planar map containing only completely vis-
ible triangles. All stages are implemented as Cuda kernels using
compute capability 5.2.

3.1. Silhouette Extraction

SVGPU detects “silhouette” edges with a spatial hash table, which
can be efficiently constructed and accessed on the GPU [LH06].
(We use the term silhouette in this paper loosely, to refer to the vi-
sual contour of edges shared by both frontfacing and backfacing
triangles.) We compute the hash index of each edge as a bit in-
terleaved mixing of the sorted 3-D coordinates of the edge’s two
vertices. The triangle is inserted into the hash table at three places
corresponding to the hash keys of its three edges.

Once all triangles have been entered into the hash table, the sil-
houette edges are extracted as entries whose corresponding face
normals (in projected viewing coordinates) have oppositely signed
z values. We also include as silhouettes any edges where the hash
table lists any number of triangles besides two. Since this approach
is based on vertex geometry and not mesh topology, it robustly han-
dles triangle soup inputs so long as the shared vertices between
neighboring triangles are sufficiently close enough to hash to the
same table entry. Other hash collisions also occur, so during ex-
traction each key bucket is traversed to produce only appropriate
silhouette edge pairs. When each silhouette edge is identified, the
edge is then binned at the same resolution as the clipping bins used
for geometry, but in a separate set of bins. This kernel uses one
thread per bucket.

3.2. Silhouette Clipping

The silhouette clipping stage clips every triangle to every silhou-
ette edge in the current silhouette clipping bin. Since we expect the
number of triangles that overlap each silhouette edge to be small,
we segment this stage into two steps to retain GPU instruction co-
herence: a culling step (based on a trivial reject test) and a clipping
step that performs the actual clipping operation. In the following
subsections we will refer to variables and functions in our pseu-
docode, and we will italicize their names.

3.2.1. Silhouette Clipping: Culling and Setup

The culling phase is used to remove most of the non-
overlapping triangle-edge pairings from consideration for clipping.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



A. Ellis et al. / SVGPU

1

2

window coords.
(including depth)

A

C

D

B

3
4
5

projection plane

Figure 4: Geometric configuration for clipping ∆123 to silhouette
edge AB.

Let (x1,y1,z1),(x2,y2,z2) and (x3,y3,z3) be the window coordi-
nates of a triangle ∆123, and let (xA,yA,zA) and (xB,yB,zB) be the
window coordinates of the silhouette edge AB, as shown in Fig-
ure 4. Then this culling step consist of three tests.

1. If (x1,y1),(x2,y2) and (x3,y3) lie on one side of the line passing
through (xA,yA) and (xB,yB), then cull.

2. If (xA,yA) and (xB,yB) lie on the outside of a line passing
through any combination of (x1,y1),(x2,y2) and (x3,y3), then
cull.

3. Let C and D be the points on the line passing through A and B,
and let 4 and 5 be the points on the edges of ∆123, such that
(xC,yC) = (x4,y4) and (xD,yD) = (x5,y5) indicate where the
window projection of the silhouette edge crosses the window
projection of the triangle. If zC and zD are behind (less than) z4
and z5, then cull.

We also cull if (4) the silhouette edge is an edge of the triangle,
(5) if the triangle is back facing, and (6) if the triangle is obviously
in front of the silhouette edge: minz1,z2,z3 > maxzA,zB.

The culling segment is implemented as an m × n kernel that
considers the coverage of m triangles by n silhouette edges, in
each bin. We use dynamic parallelism to retain GPU utilization,
see Section 3.2.3. We launch a single kernel from the CPU, with
BinCount threads, where each thread retrieves m and n (TriCount
and EdgeCount) for its bin, and launches the culling kernel as a
child kernel. Each top level thread also launches the follow up ker-
nels to create the data structures need for clipping. In fact these top
level threads are additionally responsible for launching the clipping
kernels described later.

In the culling kernel, TrivialRe ject, each thread considers
whether one specific triangle is covered by one specific silhouette
edge. If the thread survives all culling tests, it outputs a candidate
pair consisting of the triangle id and the silhouette edge id. We
use atomics to increment a per triangle edge counter for each pair
(EdgeCounts), and to build a list of triangle ids that are going to be
clipped, TriangleList.

The clipper requires an adjacency list (EdgeList) that, for
each triangle id, holds a list of silhouette edge ids. These edge

ids index into the silhouette bins created during silhouette ex-
traction. To allocate and populate EdgeList, two kernels are
launched directly following the culling kernel. The allocation ker-
nel, AllocateAd jacency, runs first and reserves row space for each
triangle. With CandidateTriangles # threads, the kernel indexes
into TriangleList by thread id to retrieve the triangle id which each
thread uses to read the triangle’s edge count from EdgeCounts.
Each thread then adds the edge count to an atomic counter, and
stores the old count to a buffer. This old count will be used later as
the row offset to a triangle’s edges in EdgeList. The second kernel
populates the EdgeList. Using CandidatePairs # threads, we read
the candidate pair buffer and use each pair’s triangle id to index
into the buffer of row offsets we just created in the previous kernel.
We then store the pair’s edge id in EdgeList at the row offset plus
a count which is incremented atomically with each edge.

Clipper also requires a data structure that holds position data
for all polygons being clipped at any time. Luckily we can ini-
tialize this PolygonData structure in the culling kernel. We must
only write the triangle’s positions once, not for every triangle-edge
pair. We check if the per triangle edge counter in EdgeCounts was
zero before it’s increment, and if so, we use this thread to write the
triangle into PolygonData. We index into EdgeCounts using the
triangle id i.e. the index of the triangle in its bin. Naturally a single
per bin atomic is used to keep track of the write offset for a triangle
into the polygon buffer.

3.2.2. Silhouette Clipping: Clipping

Clipping proceeds in rounds operating off of the EdgeList, the
PolygonData buffer, and some indexing structures described be-
low. Each round, each thread will clip one triangle by one of
its corresponding silhouette edge candidates, so the thread count
in each kernel launch is the count of participating triangles,
ActivePolygons. After a single triangle is clipped, a polygon may be
produced. As such we will refer to polygons as opposed to triangles
from this point forward. Our clipping algorithm follows Bernstein’s
work with fast exact booleans [BF09].

The reason we use this clipper is to maintain a single level of
clipping error throughout the pipeline. We store a list of edges for
each polygon and always regenerate clip intersections from these
original input edges. We do store the intersection points temporarily
for evaluating point-on-edge-side predicates. Otherwise it would be
necessary to re-derive the exact same point every time a polygon is
considered, so this saves some computation.

A clip occurs as follows. We iterate through each neighboring
triple of vertices on the polygon starting with the last vertex, first
vertex, and second vertex in the polygon’s vertex list. Bernstein
showed this is necessary and sufficient to sort out all ambiguous
clipping cases. The points are categorized as “on,” “in,” or “out” of
the clipping edge using a simple point-edge-side predicate. The al-
gorithm uses a lookup table to decide at each step whether to output
the current edge, or to generate a new vertex via edge-edge intersec-
tion, and output the associated clip edge with it. Our lookup table
differs slightly from Bernstein’s, in that we use the convention of
storing a vertex with the edge leaving the vertex. The LUT deriva-
tion however is quite simple following the boolean work, and we
omit it here.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



A. Ellis et al. / SVGPU

function CLIPPINGKERNEL(ClipStructures)
//ClipStructures here is meant here to contain
//all structures used in the clipper code :
//PolygonData, PolygonIn f o, EdgeIn f o,
//EdgeList, TriangleList, and various counters
//By Bins we re f er to the tri bins and edge bins
T =TriCount ∗EdgeCount
TrivialRe ject <<< T >>> (Bins,ClipStructures)
//same value as ClipStructures.ActivePolygons
T =ClipStructures.CandidateTriangles
AllocateAd jacency <<< T >>> (ClipStructures)
T =ClipStructures.CandidatePairs
BuildAd jacency <<< T >>> (ClipStructures)
Round=0
while ClipStructures.ActivePolygons do

T =ClipStructures.ActivePolygons
Clip <<< T >>> (Bins,ClipStructures,Round)
ClipStructures.swapBu f f ers
Round ++

T =ClipStructures.TessCount
Tessellate <<< T >>> (Bins,PolygonData)

ClippingKernel <<< BinCount >>> (Bins...)
function TRIVIALREJECT(Bins,ClipStructures)

for all Edges and Triangles do
Tri = T hreadId/SilhouetteCount
Edge = T hreadId%SilhouetteCount
if !CullingTests(Tri,Edge) then

CLoc = INC(CandidatePairs)
Candidates[CLoc]=(Edge.Id,Tri.Id)
EdgeCount = INC(EdgeCounts[Tri.Id])
if EdgeCount == 0 then

PLoc = INC(PolygonCount)
PolygonData[PLoc]=(Vertices,Edges)

function CLIP(Bins,ClipStructures,Round)
for all Polygons do

PIn f o=PolygonIn f o[T hreadId]
EIn f o=EdgeIn f o[PIn f o.TriId]
ClipEdge=EdgeList[EIn f o.rowo f f set +Round]
PData=PolygonData[PIn f o.o f f set]
NextPosition=ADD(PositionCounter,PIn f o.Sides)
RecheckTrivialRe ject(PData,CEdge)
for I in PInfo.Sides do

(Last,Curr,Next)=PData.GetVertices(I)
(p0, p1, p2)=Predicate(Last,Curr,Next,Edge)
COND=LUT (p0, p1, p2))
if COND... then

VertexOut=Curr.Vertex
if COND... then

VertexOut=Isect(Curr.Edge,ClipEdge)
if COND... then

EdgeOut=Curr.Edge
if COND... then

EdgeOut=ClipEdge
Out putVertex(EdgeOut,VertexOut)

Out putIn f o(NextPosition, ...)

Aside from the polygon position buffer PolygonData, there are
two more structures used to keep track of information during clip-
ping. For each active polygon being clipped, the PolygonIn f o
buffer holds the triangle id, side count, and an offset into
PolygonData where its vertices live. For every original polygon,
the EdgeIn f o buffer holds the row offset into EdgeList, and an
edge count. Since we launch one thread per active polygon during
clipping rounds, we index into PolygonIn f o by thread id. We then
use its triangle id member to index into EdgeIn f o. The row offset
member of EdgeIn f o is used to retrieve this actual clipping edge
by indexing into EdgeList at the row offset with the current round
number added to it. Finally we read PolygonData at the offset
stored in PolygonIn f o and proceed to clip. The PolygonData struc-
ture includes edges, vertices, and barycentric coordinates. Note that
barycentric coordinates are clipped along with the polygon’s edges
in order to provide interpolation for the original triangle’s vertex
attributes.

Once all clipping rounds have occurred for all triangles and their
respective child polygons, the clipping phase retires and we tessel-
late the polygons back into triangles with a final kernel. Tessellation
is straightforward since all the polygons are convex. We launch one
tessellation thread per polygon.

It is important to note a few things about the clipper. First, a
single clip must retain both sides of the clipped polygon, because
the portion of an edge clipped away by one silhouette edge may
be reintroduced by a subsequent silhouette edge. Hence we run the
clipping step twice, reversing the predicates the second time to ob-
tain the polygonal region clipped by the first clipping run. The rea-
son we use two separate runs is to improve thread coherence, since
not all threads will clip, they do not need to participate in the sec-
ond pass. Second, one should recheck trivial rejection of candidate
silhouette edges against clipped (child) polygons. This mitigates
the case in which there is a large polygon, behind a complex ob-
ject, and it is repeatedly clipped by all edges in the complex object,
when in fact those edges do not overlap the polygon. This must be
done because the clipper itself is otherwise oblivious to whether or
not an edge actually overlaps a polygon, since the edge equation
extends to infinity. The trivial reject test can be implemented in
the prologue of the clipping kernel or in a separate kernel. We ex-
perimented with both approaches and ended up with the prologue
approach to reduce complexity.

3.2.3. Dynamic Parallelism

Dynamic Parallelism, available in Cuda on compute capability 3.5+
GPUs, is a natural fit to this kind of problem. It allows a kernel to
launch another kernel. With clipping we have work items that can
produce more work items in non uniform distributions, i.e. we have
dynamically changing amounts of parallelism. So we need to be
able to redistribute work between compute resources to keep the
GPU busy. Otherwise load balance is lost.

There is more than one way to achieve this, but a simple solution
is to restart the kernel every time a generation of work items has
finished computing the next generation of work items. This how-
ever, causes a CPU synchronization bottleneck, and was the main
motivation for turning to dynamic parallelism. With kernels that

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



A. Ellis et al. / SVGPU

Figure 5: Benchmark scenes (l-r, t-b: Armadillo, Dragon, Buddha,
Armadillo Box, Dragon Bunnies, Sponza) with various shaders ap-
plied using interpolated view space positions and normals, in ad-
dition to the Bunny and Teapot.

launch kernels we can avoid the CPU bottleneck and adjust to the
changing workload as needed.

Dynamic parallelism is also a natural fit because it encapsulates
the binned structure of our algorithm. Running a single kernel to
compute different numbers of work items for different bins can be
complicated to manage, likely requiring prefix sums to compute bin
delimitations. We avoid this altogether with dynamic parallelism.

3.3. Triangle Occlusion

After clipping we are left with possibly overlapping but non-
crossing triangles. No triangle is partially occluded, so if any part
of a triangle is occluded, then it is completely occluded. The trian-
gle occlusion step removes any occluded triangles, leaving a planar
map of depth complexity one consisting only of the visible triangles
of the scene.

We first re-bin the triangles output from silhouette clipping at a
finer bin resolution to reduce occlusion’s all-to-all time complexity,
as detailed in Section 4.1. This step is straightforward and fast. We
then run the triangle-to-triangle occlusion kernel, one thread per
pair, in each of these occlusion bins.

Since each triangle is either fully occluded or fully visible, a
simple centroid test suffices to determine visibility. We calculate
the centroid of the potentially occluded triangle, and derive the
barycentric coordinates of that point on the potentially occluding
triangle. When we have the barycentric coordinates, we can inter-
polate the z value at the occluder’s vertices and test it against the
centroid z value. We discard any triangle whose centroid is over-
lapped by any other triangle. We only test the original triangles as
occluders. This reduces the occlusion test to fewer triangles and
is still valid since the original triangles are a superset of the many
triangles that have been refined by silhouette clipping.

Stage Bun. Arm. Drag. Bud. Box D+B Sza. Tea.
Sil. Hash 1.2 3.8 24 35 3 66 .4 .19
Sil. Clip 12 30 42 64 175 249 177 22

Occlusion 2.3 18 38 78 39 179 8 2
Total 15.5 51.8 105 205 217 527 185.4 24.19

Table 1: Profile of SVGPU run time performance (ms) per stage,
using 1,024 silhouette clipping bins.

4. Results

Our prototype implementation is demonstrated on a variety of well
known models, specifically the bunny, teapot, armadillo, dragon
and buddha, as well as on some larger scenes constructed to ex-
hibit pathological cases: armadillo in the Cornell box, a dragon be-
hind several bunnies, and the Sponza, as shown in Figure 5. The
armadillo in the Cornell box exhibits a situation in which many
tiny silhouette edges are candidates for clipping a few large poly-
gons in the background. The dragon with bunnies on the other hand
showcases a scenario in which a very large number of silhouettes
are clipping against many small triangles. Each of these models
was represented as an indexed face set, and for these examples our
silhouette extraction used a hash on the vertex indices instead of
the vertex coordinates.

Table 1 reports our profile performance measurements for the
various stages of the SVGPU rendering process. Our measurements
of silhouette hashing show it ranging from less than 1% of the total
run time to almost 20%. While this run time is tied to the silhou-
ette count, our experiments show it is also largely influenced by
the number of hash collisions. Collisions affect the run time of a
single thread’s bucket traversal, so some threads will run long and
diverge from the other threads in their warp, causing load imbal-
ance. As expected, our profile performance measurements of the
silhouette clipping process was greatly influenced by the number of
silhouette clipping bins, and clipping was the major contributor to
the bin variance shown later in the performance charts. Our profile
of occlusion showed it to vary similarly to the silhouette hashing
performance, suggesting that the same features that create silhou-
ettes are also creating additional occlusions. Overall, clipping used
about two-thirds of the time, occlusion about one-third, and silhou-
ette hashing was either negligible or at most about one-fifth of the
run time.

Fig. 6 shows the number of output triangles that SVGPU gen-
erates in the output planar map is quite low for individual models
but grows for scenes. As the silhouette clipping bin resolution in-
creases the output triangle count grows. This is attributed to clip-
ping to bin edges, but utilizing more, smaller bins to help increase
load balance and reduce the number of all-pairs silhouette-triangle
clipping cases. We clip to bin edges to maintain correctness during
the clipping stage, and more bins generate more clipping on bin
borders, which produces more triangles. The armadillo-in-the-box
scene produces fewer polygons than what might be expected from
the excessive clipping in that scene. The largest growths comes
from the high depth complexity of Sponza and the low initial poly-
gon count of the Utah teapot.

Fig. 7 shows that the number of silhouette clipping bins affects

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



A. Ellis et al. / SVGPU

Bins Bun. Arm. Drag. Bud. Box D+B Sza. Tea.
∆ in 69K 212K 900K 1M 212K 1.4M 60K 8.3K

64 32K 126K 303K 452K 121K 365K 40K 5.8K
256 37K 137K 322K 470K 128K 378K 48K 7.1K
1K 48K 158K 360K 504K 139K 423K 89K 10K
4K 71K 200K 391K 544K 114K 21K

Figure 6: Output size growth measured as the number of triangles
output v. input, for different choices of number of silhouette clip-
ping bins. (Dragon and Buddha examples reported for 4,096 bins
actually only used 2,500 bins.)

the performance. Larger numbers of smaller bins helps the clip-
ping phase to better balance its load, subdividing the scene more
aggressively to avoid teapot-in-a-stadium situations. However, at
some point, in most cases separating the screen into 4,096 bins,
the increase in the number of bins begins to have negative affects.
The increases triangle clipping to the smaller rectangular bound-
aries of the more plentiful bins begins to affect both clipping time
and occlusion time by generating more work for the clipper and
more triangles for occlusion. The overall optimum appears to be at
1,024 = 32×32 silhouette clipping bins.

Fig. 8 reveals the SVGPU triangle rate, ranging from a peak
of 8.65M triangles per second for the 900K element mesh of the
dragon down to about 200K triangles per second for the teapot,
whose meager 8.3K element mesh does not generate enough par-
allelism in SVGPU’s thread configuration. Most of the models
(bunny, armadillo, buddha) achieve a typical 4M ∆/s triangle rate.
It is interesting to note that the bunny and Sponza are both similarly
sized in the 60-70K range, but Sponza’s triangle rate is significantly
lower, likely from its depth complexity and the resulting increased
impact in the per-bin all-pairs steps of clipping and occlusion.

Table 2 reveals the size of the various data structures and buffers
used throughout the pipeline. It shows the max number of elements
of a particular type that were in flight during run time and their
averages over all non empty bins. Bin populations are also listed
along with total output triangles. These numbers reflect the items
not bytes. The scaling of storage requirements with bin size can be
observed moving across each row. The trends behave as we would
expect with all values shrinking with the increase in bin resolu-
tion. The main problem exhibited here is scaling. Bin resolutions
are growing by powers of two, and what we would want to see is
that the item counts also move down in powers of two (or more).

Bins Bun. Arm. Drag. Bud. Box D+B Sza. Tea.
64 48 15 5.6 3.1 1.8 .97 2.7 27

256 59 19 8.6 4.8 2.4 1.3 4.7 37
1,024 65 19 9.5 4.9 4.6 1.9 5.4 41
4,096 42 14 9.6 3.8 5.3 24

Figure 7: Performance measured in frames per second (Hz.), for
different choices of number of silhouette clipping bins. (Dragon and
Buddha examples reported for 4,096 bins actually only used 2,500
bins.)

This would keep the system stable/linear in terms of memory con-
sumption. This is not the case however, the item counts are moving
down just about linearly, so the increase in bin resolution is costly
in terms of storage requirements.

4.1. Occlusion Binning

For the occlusion stage, as discussed earlier, we used more, smaller
bins than we do in the silhouette clipping stage. Smaller silhouette
clipping bin sizes reduce the number of triangles for that stage’s all-
pairs quadratic comparison of triangles to silhouette edges, but set-
ting them too fine (as was the case of 4,096 silhouette clipping bins)
requires too much bin rectangle clipping and outputs too much ge-
ometry to the occlusion stage. Thus we use a separate finer bin
sizing for the occlusion stage.

In our examples, we used 4,096 bins for all of the models ex-
cept the dragon and the Buddha, regardless of the number of sil-
houette clipping bins (64, 265, 1,024 or 4,096). Due to the heavy
feature-driven occlusion of the Buddha and dragon models, we
used 16,384 bins for their occlusion computation. These models
eventually overflowed our available memory, when using 4096 sil-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



A. Ellis et al. / SVGPU

Bins 64 256 1,204 4,096 64 256 1,204 4,096
Ave. Max Ave. Max Ave. Max Ave. Max Ave. Max Ave. Max Ave. Max Ave. Max

Model (tris.) Bunny (69K) Armadillo (212K)
Clipping Bin Occupancy 1K 8K 497 6K 191 3K 75 2K 6K 26K 2K 12K 729 7K 243 2K
Occlusion Bin Occupancy 31 3K 43 3K 58 3K 75 2K 110 3K 154 3K 204 3K 243 2K
Candidate Pairs 333 2K 153 2K 76 1K 39 1K 2K 9K 705 4K 284 3K 113 2K
Clip Polygon Count 214 1K 108 1K 54 854 26 713 685 3K 322 2K 149 1K 66 585
Clip Vertex Buffer Size 981 7K 470 7K 228 4K 109 3K 4K 17K 3K 9K 1K 7K 723 4K
Model (tris.) Dragon (900K) Buddha (1M)
Clipping Bin Occupancy 7K 31K 4K 13K 1K 8K 798 5K 23K 49K 8K 19K 3K 10K 1K 6K
Occlusion Bin Occupancy 215 3K 284 3K 356 3K 490 2K 118 2K 155 2K 190 2K 338 3K
Candidate Pairs 3K 10K 1K 5K 392 4K 253 2K 5K 13K 2K 8K 696 7K 378 4K
Clip Polygon Count 1K 4K 552 2K 243 2K 163 798 3K 5K 1K 3K 413 2K 240 1K
Clip Vertex Buffer Size 7K 18K 3K 9K 1K 7K 723 4K 13K 28K 5K 15K 2K 9K 1K 7K

Table 2: The size of the various structure buffers used during clipping along with bin sizes and output triangle counts. The memory con-
sumption of each data structure both at it’s max across bins and on average can be approximated from these counts.

Bins Bun. Arm. Drag. Bud. Box D+B Sza. Tea.
64 3.3 3.1 5.1 3.1 .39 1.4 .16 .23

256 4.1 4.1 7.8 4.8 .51 1.8 .28 .31
1,024 4.5 4.1 8.6 4.9 .98 2.7 .32 .34
4,096 2.9 3.0 8.7 3.8 .32 .20

Figure 8: The triangle rate, measured in million triangles per sec-
ond, for different choices of number of silhouette clipping bins.
(Dragon and Buddha examples reported for 4,096 bins actually
only used 2,500 bins.)

houette clipping bins and 16384 occlusion bins, and so we were
only able to generate them with a maximum of 2,500 silhouette
clipping bins and 10,000 occlusion bins.

4.2. Comparison with Previous Work

Previous results from analytical visibility on the GPU [AWJ13] ren-
der the 70K-triangle bunny at a variety of raster resolutions in a
time ranging from 99 to 128 ms (visibility only), on an NVidia
GeForce GTX 680, which has 1,536 cores running at 1GHz. Our
results were computed on an NVidia GeForce GTX 980, which has
2,048 cores running at 1.1GHz. Comparing results from different

GPUs is a complex process, but we can estimate that since GTX
980 represents 33% more cores running 10% faster, we should see
about a 47% improvement in speed over the 680 used for analytical
visibility’s results (ignoring many other differences, including e.g.
memory bandwidth).

This is a trivial comparison but nonetheless one of the only ap-
ples to apples comparisons available. SVGPU renders the bunny
into a planar map in about 15ms (visibility only), whereas the an-
alytic system running 47% faster would compute visibility for the
bunny in about 70 ms, leading us to believe SVGPU is about 4.5
times faster. However SVGPU scales well as is demonstrated by
the fact that it finishes the visibility computations of the armadillo
roughly two times faster than the analytic system can compute the
bunny, and further the close to one million polygon dragon is only
30 percent slower than their bunny.

4.3. Failure Cases

There are several shortcomings in our prototype implementation
that should be addressed in future work. The primary issues are
that memory usage is high and GPU utilization is fairly low.

At higher bin resolutions the system requires a significant
amount of memory and this inhibits the rendering of our more com-
plex scenes, e.g. armadillo in the Cornell box and the dragon behind
the bunnies. We could not load the required buffers onto the GPU
at a 64× 64 bin resolution. Further, we are not using our memory
budget effectively in teapot in a stadium scenarios. We cannot ren-
der scenes like Fairy Forest, because some bins generate a huge
amount of clipping and our current strategy of allocating memory
uniformly doesn’t handle this case well. A solution to this memory
budget issue could be to use adaptive binning structures such as
quad trees, as well as more adaptive memory allocation strategies.

Another drawback associated with memory usage is the forced
tweaking of the size parameters for various memory buffers. It is a
cumbersome and manual process. We would like to both automat-
ically size regions based on bin resolution, and further cut down
on the flatness of our buffer layouts. Again, essentially we need
more adaptive memory allocation. In the best case we could pack

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



A. Ellis et al. / SVGPU

everything, as opposed to using pre-defined offsets between bin al-
lowances as we currently do.

We do however feel there is no reason this algorithm and imple-
mentation cannot be heavily optimized in future work to support a
much wider variety of scene structure.

The kernels in our system have many execution dependencies on
memory. This causes GPU threads to idle often waiting on requests.
While GPU occupancy is reasonable around 50% to 75%, instruc-
tion issue efficiency is lower, around 20% to 25%. The kernels for
clipping and occlusion spend a lot of time in setup reading indices
and offsets into various buffers. The current implementation essen-
tially suffers from excessive indirection, which would be addressed
via more strategic GPU streaming techniques.

5. Conclusion

We have demonstrated that the GPU can implement a vector ren-
dering system which, with some additional work, could be suitable
for small scale client server 3D content streaming applications and
some VR setups. By binning geometry into small screen tiles, about
1/322 of the screen size, we achieve an optimal domain decom-
position that distributes a parallel clipping workload evenly while
limiting the impact of an all-pairs quadratic triangle occlusion test.
The result yields about a 4.5× improvement over the state of the
art.

We have analysed several performance factors which may be
useful in future implementations. In particular we have sought to
understand the impact of bin resolution on performance, worst case
memory budget requirements, and optimization such a rebinning
for increased performance.

While the system is far from complete and has it’s share of draw-
backs, we believe most of these to be implementation specific, not
algorithmic. The core algorithm will likely prove useful in future
analytic visibility efforts, whether they be in hardware or in soft-
ware. In fact we expect a hardware implementation to be feasible,
and potentially, required for real world rendering workloads.

Acknowledgments

Thanks to Sean Keely at the University of Texas Austin for invalu-
able advice on efficient GPU programming methods and fast math
operations for visibility. Further thanks to Eric Huber and Ashwin
Kumar Vijay at the University of Illinois Urbana-Champaign for
their ideas about vector rendering, and for their coding contribu-
tions towards a vectoring rendering tool suite.

References
[App67] APPEL A.: The notion of quantitative invisibility and the ma-

chine rendering of solids. Proc. 22nd ACM Natl. Conf. (1967), 387–393.
2

[AWJ13] AUZINGER T., WIMMER M., JESCHKE S.: Analytic visibility
on the gpu. Computer Graphics Forum (Proc. Eurographics) 32, 2 (May
2013), 409–418. 3, 8

[BF09] BERNSTEIN G., FUSSELL D.: Fast, exact, linear booleans. In
Proceedings of the Symposium on Geometry Processing (Aire-la-Ville,
Switzerland, Switzerland, 2009), SGP ’09, Eurographics Association,
pp. 1269–1278. 4

[BS00] BUCHANAN J. W., SOUSA M. C.: The edge buffer: A data struc-
ture for easy silhouette rendering. Proc. NPAR (2000), 39–42. 3

[CF09] COLE F., FINKELSTEIN A.: Fast high-quality line visibility.
Proc. I3D (2009), 115–120. 3

[EPD09] EISEMANN E., PARIS S., DURAND F.: A visibility algorithm
for converting 3d meshes into editable 2d vector graphics. ACM TOG
28, 3 (2009), 83:1–83:8. 2

[EWHS08] EISEMANN E., WINNEMÖLLER H., HART J. C., SALESIN
D.: Stylized vector art from 3d models with region support. Proc. EGSR
(2008), 1199–1207. 2

[Geu03] GEUZAINE C.: GL2PS: an OpenGL to PostScript printing li-
brary. www.geuz.org/gl2ps, 2003. 2

[GFD∗12] GUENTER B., FINCH M., DRUCKER S., TAN D., SNYDER
J.: Foveated 3D graphics. Proc. SIGGRAPH Asia, ACM TOG 31, 6
(2012). 2

[HK04] HO S. N., KOMIYA R.: Real time loose and sketchy rendering
in hardware. Proc. Spring Conference on Computer Graphics (2004),
83–88. 3

[HZ00] HERTZMANN A., ZORIN D.: Illustrating smooth surfaces. Proc.
SIGGRAPH (2000), 517–526. 2

[KB05] KIM K.-J., BAEK N.: Fast extraction of polyhedral model sil-
houettes from moving viewpoint on curved trajectory. Comput. Graph.
29, 3 (2005), 393–402. 3

[KH11] KARSCH K., HART J. C.: Snaxels on a plane. Proc. NPAR
(2011), 35–42. 2

[Lau10] LAURITZEN A.: Deferred rendering for current and future ren-
dering pipelines. SIGGRAPH Course Notes: Beyond Programmable
Shading (2010). 1

[LH06] LEFEBVRE S., HOPPE H.: Perfect spatial hashing. Proc. SIG-
GRAPH, ACM TOG 25, 3 (2006), 579–588. 3

[LJ99] LAPIDOUS E., JIAO G.: Optimal depth buffer for low-cost graph-
ics hardware. Proc. SIGGRAPH/EUROGRAPHICS Hardware Workshop
(1999), 67–73. 1

[Mas15] MASON W.: Oculus is working on eye tracking technology for
the next generation of VR. http://uploadvr.com/oculus-is-working-on-
eye-tracking-technology-for-next-generation-of-vr, 2015. 2

[MKG∗97] MARKOSIAN L., KOWALSKI M. A., GOLDSTEIN D.,
TRYCHIN S. J., HUGHES J. F., BOURDEV L. D.: Real-time nonphoto-
realistic rendering. Proc. SIGGRAPH (1997), 415–420. 3

[Ras01] RASKAR R.: Hardware support for non-photorealistic rendering.
Proc. SIGGRAPH/Eurographics Hardware Workshop (2001), 41–47. 3

[RC99] RASKAR R., COHEN M.: Image precision silhouette edges.
Proc. I3D (1999), 135–140. 3

[Rob63] ROBERTS L.: Machine perception of three-dimensional solids.
Tech. Rep. TR 315, Lincoln Laboratory, MIT, 1963. 1, 2

[SEH08] STROILA M., EISEMANN E., HART J.: Clip art rendering of
smooth isosurfaces. IEEE TVCG 14, 1 (2008), 135–145. 2

[Sol15] SOLLEFELDT R.: A look at the PowerVR graphics architec-
ture: Tile-based rendering. http://blog.imgtec.com/powervr/a-look-at-
the-powervr-graphics-architecture-tile-based-rendering, 2015. 1

[SSS74] SUTHERLAND I. E., SPROULL R. F., SCHUMACKER R. A.: A
characterization of ten hidden-surface algorithms. ACM Comput. Surv.
6, 1 (1974), 1–55. 2

[WS94] WINKENBACH G., SALESIN D. H.: Computer-generated pen-
and-ink illustration. Proc. SIGGRAPH (1994), 91–100. 2

[WSC∗05] WANG J., SUN J., CHE M., ZHAI Q., NIE W.: Image space
silhouette extraction using graphics hardware. Proc. ICCSA (2005), 284–
291. 3

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.


