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Abstract Lagrangian coherent structures provide insight into unsteady fluid flow,
but their construction has posed many challenges. These structures can be character-
ized as ridges of a field, but their local definition utilizes an ambiguous eigenvector
direction which can point in one of two directions, and its disambiguation can lead
to noise and other problems. We overcome these issues with an application of a
global ridge definition, applied using the hierarchical watershed transformation. We
show results on a mathematical flow model and a simulated vascular flow dataset in-
dicating the watershed method produces less noisy Lagrangian coherent structures.

1 Introduction

The successful visualization of a large complex scientific dataset often relies on
the ability to emphasize structure hidden within it. This is particularly true of flow
datasets that in their most basic form contain a velocity vector at each point in
space, essentially doubling the dimensionality of the dataset, which confounds an
observer’s ability to perceive the data as a whole. Moreover, in unsteady flow appli-
cations, instantaneous rate of change information becomes less directly relevant to
visualize, as the more salient flow information is contained by Lagrangian measures
that intrinsically incorporate the integrated flow behavior.

A variety of analysis techniques can simplify a flow dataset by recognizing and
displaying structures representing similar flow characteristics. The recent and com-
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pelling method of Lagrangian coherent structures [19] reveals the boundaries of
regions of shared characteristics for unsteady fluid flow.

Lagrangian coherent structures can be defined in a variety of different ways
(e.g. [5, 20, 6]), but commonly as the ridges of a scalar field of the finite time
Lyapunov exponent (FTLE) indicating the divergence of neighboring pathlines in
a time-varying flow. Ridges are features typically derived from the second deriva-
tives of the field, and so for common datasets are susceptible to noise and other
issues.

A current commonly used approach to extract ridges from datasets are local,z
based on a marching cubes fit of the local ridge configuration in a cell from the
FTLE data at the vertices. The local definition of a ridge is based on a matrix eigen-
vector, which only indicates the orientation of a line, but the ambiguity created by
the fact that e and −e are both equally valid eigenvectors can lead to an orientation
ambiguity when detecting the ridge surface. This ambiguity can manifest as spuri-
ous false positives and other noise in the ridge surface extracted by local methods
such as marching ridges often used for LCS extraction [16].

Watershed methods provide a global approach to extract topological structures
from datasets. Sahner et al. [15] describe both a non-global “continuous” watershed
approach that traces ridges as separatrices in the Morse structure, as well as a global
“discrete” watershed transformation, and use the global watershed transformation
to extract vortex and strain skeletal surfaces. We similarly propose and demonstrate
watershed separatrix surface extraction for the visualization of flow structure, but for
LCS instead of vortex/strain skeletal surfaces, and using a hierarchical watershed to
filter out spurious details, to more clearly define the boundaries between neighboring
watersheds as a global sea level rises.

These global watersheds can miss some spurious ridge features and can also
produce small disjoint ridges due to noise and small field undulation. As stated in
Sahner et al. [15], every watershed boundary corresponds to a height ridge or valley,
but they do not necessarily coincide and furthermore ridges and valleys might exist
that lack corresponding watershed boundaries.

This paper specializes the watershed approach for extracting ridges in FTLE
data. We apply a region merging criteria similar to topological persistence that ranks
ridges based on their configuration relative to neighboring ridges and valleys. This
new filtering enabled by a global approach yields improved LCS extraction and bet-
ter visualization of unsteady flow structure.

2 Lagrangian Coherent Structures

Let v(x, t) represent a time-varying velocity function. We denote the flow map
Φ(x, t0,T ), which takes x to its new position at time t0 +T by integrating the veloc-
ity to trace the point along its trajectory
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Φ(x, t0,T ) = x+
∫ T

0
v(Φ(x, t0, t), t)dt. (1)

The Cauchy-Green strain tensor is the positive definite matrix

C(x, t0,T ) =
[

∂Φ(x, t0,T )
∂x

]T [
∂Φ(x, t0,T )

∂x

]
, (2)

and measures finite-time strain of infinitesimal line elements in the fluid. The max-
imum separation rate is achieved when ∆x is parallel to the major eigenvector of
C(x, t0,T ). The finite-time Lyapunov exponent (FTLE) measures this maximum
separation rate as

f (x) =
lnλmax(C(x, t0,T ))

2|T |
, (3)

for points x at a given time t0 over a given time interval T. Lagrangian coherent
structures are often obtained as ridges of FTLE, but their specific definition relies
on the particular definition of “ridge” that is used.

The height ridges of a scalar field f are defined as the points satisfying

∂ f
∂e1

= 0 (4)

∂ 2 f
∂e2

1
< 0 (5)

where f is a scalar function and e1 is either the minimum [2] or largest magnitude
[9] eigenvector of the Hessian of f . The C-ridges of a scalar field f are defined
similarly, except e1 is the major eigenvector of the Cauchy-Green tensor (2) [17]
based on “normally hyperbolic” LCS [6]. In this work we do not target hyperbolic
LCS per se, but the more generic FTLE ridge.

Lagrangian coherent structures can be revealed by a continuation method that
tracks the surface from one or more seed points placed at FTLE local maxima [17].
The surface grows from these seed points by integrating a tangent plane orthogonal
to the major eigenvector of the Cauchy-Green tensor. While the algorithm is shown
to be quite efficient, it required at least one seed point on every LCS component,
and multiple seeds on the same component could lead to duplicated surfaces.

LCS can also be revealed through a marching ridges technique [16]. Marching
ridges [4] is a variant of the marching cubes isosurface technique [10] used when the
orientation needed to define the isosurface is inconsistently specified. An eigenvec-
tor e represents an axis, without preference of e or −e. Ridge surfaces formulated
from eigenvectors often must choose one of these two directions e or −e for each
eigenvector e. Marching ridges strives to consistently choose eigenvector directions
to define an orientable isosurface, but can fail especially when sorted eigenvectors
change their order across a single cell.

LCS can also be extracted as a subset of raw features [11] satisfying
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det
(
H0g|...|Hn−1g

)
= 0. (6)

The matrix H is the Hessian of the scalar function f , but can also be interchanged
with the Cauchy-Green tensor. Since (6) does not rely on eigenvectors, raw features
can be extracted as an ordinary isosurface, e.g. using marching cubes, except where
they may contain non-manifold self intersections. These self intersections can con-
found the use of raw features to find LCS, as can the numerical instability of (6).

All of these approaches rely on a local definition of ridges and LCS, which makes
them susceptible to noise and other algorithm specific issues, such as surface du-
plication or non-orientability. A global approach would overcome these issues by
defining ridges and LCS as region boundaries by growing the regions they bound
instead of tracking the boundaries between regions.

3 Watershed Segmentation

In image processing, “watershed” methods have long been used for image segmen-
tation [13]. These techniques outline the objects depicted in an image by finding
ridges in the image pixel values. For LCS extraction, such global watershed methods
better reduce the false positives and non-orientability of previous local approaches.

A variety of methods can be applied to a scalar field to separate it into watershed1

ridges and regions. A region can be defined as the points that flow to the same local
minimum but this can be inefficient to compute.

It is more efficient to increment a sea-level threshold value from the global min-
imum value to the global maximum value. When this theshold value passes a local
minimum, it creates a region that grows as the threshold increases. Neighboring
regions grow into each other, identifying ridges where they meet.

The Vincent-Soille (V-S) algorithm [21] runs in linear time (proportional to the
number of datapoints), and classifies all of the datapoints in an dataset as either ridge
or region, labeling non-ridge datapoints by the region to which they belong. The V-S
algorihm first bucket sorts the datapoints, then floods each bucket of datapoints in
order from least to greatest. Ridges form when a datapoint in the current bucket has
neighbors belonging to two regions, but the points in the bucket often form thick
regions. Hence a (linear) distance transform is applied to the buckets to compute
the distance from the nearest previously defined region (using a circular queue). In
the computation of this distance transform, datapoints are assigned to their closest
region. If datapoints is not connected to a closest region, then it forms a new region.
If a datapoint is equidistant to multiple regions, then it is classified as a ridge.

When applied to image segmentation, the watershed method typically overseg-
ments, yielding many small regions. When applied to LCS this leads to a distracting
number of insignificant ridges due to noise and subtle variation in the FTLE field, as

1 The term watershed comes from hydrology, where it denotes a drainage basin region. Some texts
that apply it to dataset analysis incorrectly use it to refer to the ridges separating these basins, and
call the basins “catchment basins.” To avoid confusion, we will refer to ridges that separate regions.
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Fig. 1 Oversegmentation of the LCS of a simple convection cell flow due to variation and noise in
the FTLE field.

shown in Figure 1. Hierarchical watershed methods merge similar regions to form
progressively coarser segmentations and have been useful for discerning the impor-
tant features in a dataset.

One method for constructing a watershed hierarchy is the waterfall transforma-
tion [1]. It constructs a graph consisting of nodes representing each ridge segment.
The node’s value is set to the difference between the median values of the two re-
gions its corresponding ridge separates. Each pair of these nodes is connected with
an edge if their corresponding ridge segments border the same region. Then the next
level higher in this hierarchical watershed is the watershed of these ridge nodes,
using the average ridge value for each node.

Alternatively, regions can be merged based on similarities in their level and/or
the characteristics of the ridge separating them. To provide better control for the
application of LCS extraction, we utilized this region merging approach to filter
unnecessary FTLE ridges.

Our criteria to define a criterion for merging neighboring regions resembles the
notion of topological persistence [3]. The persistence of a topological feature in-
dicates how robust it is to perturbation. A well-chosen perturbation in the dataset
could remove a ridge, merging the regions it separated into a single region. From
the Morse theory viewpoint, this perturbation would merge a saddlepoint with the
minimum of one of the regions. The persistence of a ridge is thus the difference
between the lowest point on the ridge (its saddlepoint) and the larger of its two
neighboring minima.

We set a persistence threshold and merge regions separated by ridges that do not
meet this threshold. We accelerate this merging with a union-find data structure.

This approach is similar to scale-space hierarchical methods that smooth datasets
before performing the watershed transform, using e.g. Gaussian smoothing [8]. Such
techniques smooth the data with increasing filter widths to produce coarser levels
of the watershed hierarchy. These smoothing operations merge neighboring regions
because they cancel saddlepoint-minima pairs.
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4 Polygonization

The implicit function theorem shows that the isosurface of a regular isovalue of an
analytic field function is a manifold. However, the ridges arising from the FTLE
are not necessarily so, and can include non-manifold junctions that require special
methods for surface extraction [7, 12]. The “crease surfaces” analysis [18] for exam-
ple shows that ridge surfaces consist of manifold patches that meet at non-manifold
junctions where the Hessian is degenerate.

We utilize a variation of marching cubes for polygonization of the ridge surfaces.
The watershed transform labels each voxel value with a region, and ridges arise in
cells whose eight corner vertices (where the voxel values are evauated) lie in two
or more disjoint regions. If a cell’s vertices lie in only two regions, we use ordinary
marching cubes to polygonize the cell.

Fig. 2 Polygonization of a cell whose eight corners lie in eight different regions.

For cells that straddle three or more regions, we implement a variation of mul-
tiple material marching cubes [22]. For each of the six cell faces, we add a face
center vertex and insert a pair of triangles to separate any edges whose vertices lie
in separate regions. We then add a vertex at the cell center to connect these trian-
gles. Figure 2 demonstrates the case where all eight cell corners belong to different
regions. There are two cases where a vertex at the voxel face center is not needed,
as shown for the front face of each example in Figure 3.

Since the cell corners indicate only the region, and not a scalar value, the ver-
tices used to polygonize a cell are inserted at the center of edges, faces and the cell.
This leads to a blocky cuberille appearance of the resulting surface as shown in Fig-
ure 4. We remove these distracting visual artifacts through a smoothing process. We
implemented a constrained Laplacian smoothing through conjugate gradient mini-
mization of the energy functional

E({xi}) = ∑
i
||xi−xi||2 +λ ||xi−x′i||2 (7)



Hierarchical Watershed Ridges for Visualizing Lagrangian Coherent Structures 7

Fig. 3 Two cases where a vertex is not needed at the center of a cell face, shown for the frontmost
face.

where xi is the centroid of the vertices neighboring vertex xi and x′i is its original
position in the cuberille polygonization. The parameter λ indicates how much the
original position is respected, which we set to 0.01 in our experiments.

Fig. 4 Blocky artifacts created from multiple region marching cubes for voxels that only indicate
region number.

The non-manifold surfaces that arise from multiple region marching cubes re-
quire special care for proper smoothing. Branch points whose neighbors may repre-
sent ridges between several different regions can confound the smoothing process,
as shown in Figure 5 (left).

For each vertex, we find the maximum number of faces that share one of its
edges. We limit that vertices neighbors to the ones whose edge is shared by that
maximum number of faces. This process smooths non-manifold junctions well, as
shown in the example of two intersecting spheres shown in Figure 5 (right).
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Fig. 5 Ordinary Laplacian smoothing of non-manifold surfaces creates unsmooth results (left)
which are fixed by limiting the neighborhoods used for Laplacian averaging (right).

This Laplacian smoothing approach differs from the one used for multiple mate-
rial marching cubes (M3C) [22]. Our approach smooths vertices even when they are
shared by more than two surfaces, whereas M3C smoothing leaves such vertices sta-
tionary. Our approach also does not require additional information that M3C uses,
such as which materials are adjacent to a given vertex.

5 Results

We compared the watershed approach to marching ridges on two datasets. The first
is an Arnold-Beltrami-Childress (ABC) flow, shown in Figure 6. The ABC flow
dataset yields an FTLE field over a 2013 voxel array with values ranging from
0.0643 to 0.512.

Figure 7 compares the Lagrangian coherent structures extracted from the FTLE
field of the ABC Flow dataset. The marching ridges example follows the recom-
mended noise filtering steps [14], including (1) scalar thresholding (remove ridges
with FTLE less than 0.3), (2) least eigenvalue thresholding (remove ”flat” ridges
with eigenvalue greater than -1.0), and (3) a threshold on the size of connected com-
ponents (removing disjoint components with less than 500K vertices). The displayed
denoised marching ridge result consists of one connected component of 677K ver-
tices, but even with filtering, some noise persists.

The V-S watershed approach yields 797 watershed regions at the lowest level of
the watershed hierarchy, which we merge by removing low persistence ridges to 103
regions. The resulting mesh, after smoothing, consists of 1.275M faces and 622K
vertices. Figure 7 also shows some smoothed stairstep artifacts that reveal some
issues with the merging of watershed regions as discussed further at the end of the
section.
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the FTLE Field with Smoothed Watershed Ridges

Smoothed Watershed Ridges with FTLE color and opacity

Fig. 6 The ABC flow, displayed as the FTLE field data (upper left) along with the embedded
ridges extracted by the watershed method (upper right) and the watershed ridges themselves (lower
center).
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Marching Ridges Watershed

Fig. 7 Lagrangian coherent structures extracted from FTLE of the ABC Flow dataset using the
marching ridges method v. the watershed method.

The second dataset we used to compare the watershed approach to marching
ridges is the abdominal aortic aneurysm (AAA) dataset, shown as an FTLE field
in Fig. 8. The AAA dataset is constructed from a pulsatile bloodflow simulation
of a lower aorta, reconstructed as a 4.4M tetrahedral mesh. The FTLE field is a
206×231×261 voxel array, ranging from 0 to 5.29812, using the value -1 indicates
the outside of the aorta.

Figure 8 compares the Lagrangian coherent structures extracted from the FTLE
field of the AAA dataset. The marching ridges example filtered out ridges smaller
than 3.0 (which was the highest setting that prevented holes from forming in the
main connected structures), set an eigenvalue threshold of zero (negative values did
not improve the result) and filtered out all but the largest connected component.
This yielded a mesh of 2.27M faces and 1.29M vertices. As before, the structure is
evident but noise is clearly visible.

The V-S watershed algorithm yields 663 regions, which we merge into 199 re-
gions when the height between neighboring regions differs by 0.05 or less. The
resulting smoothed mesh consists of 1.80M faces and 854K faces.

Dataset FTLE Resolution Watershed Mesh Vertices Smoothing
ABC Flow 201×201×201 34.21 s 1,225,558 36.4 s
Paitent 96 206×231×261 50.87 s 1,800,230 61.4 s

Table 1 Performance of the watershed method for LCS extraction.

The time required for the watershed transform, polygonization and smoothing
for the ABC flow and the AAA data is shown in Table 1. The watershed method
produces a voxel region classification on the FTLE field. The AAA FTLE field is
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AAA Lower Aorta FTLE Field

Marching Ridges Watershed

Fig. 8 Lagrangian coherent structures extracted from FTLE (top) of the AAA dataset using the
marching ridges method (lower left) v. the watershed method (lower right).

53% larger than that of the ABC flow, and its watershed transform takes 49% longer
to compute. These watershed voxel regions polygonized to produce the number of
vertices listed which follow similar proportions, but the time of the polygonization
was not a significant portion of the total time and so is not listed. The smoothing
time represents a total of 20 smoothing iterations, but takes 68% longer for the larger
AAA data, because the polygonized ridges are more complex and their vertices have
a greater number of neighbors.

One of the most exciting aspects of the global watershed approach is that the
regions can be used to coherently color the ridge surfaces, as shown in Figure 9. The
choice of color can be arbitrary, but is useful to differentiate the LCS surfaces from
each other as they undulate through the flow domain. Such colorings are enabled
by two-sided surface shading, but are unavailable for local ridge definitions (e.g.
marching ridges) that lack identification of these regions.
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ABC Flow AAA

Fig. 9 Lagrangian coherent structures for the ABC flow and Patent 96, displayed using random
colors assigned by regions, as extracted using our hierarchical watershed approach.

correct

over-
segmented

incorrectly
merged

Fig. 10 Hierarchical watershed merging can sometimes merge the wrong regions.

The main drawback of the watershed approach is that the initial application of the
watershed transformation (before merging) creates significant over-segmentation of
the datasets, resulting in many small watersheds. These small watersheds are merged
when separated by shallow ridges, but sometimes the shallowness, which we use as
the persistence of the ridge, not properly eliminate some shallow ridges even though
this persistence based approach works well for most spurious ridges such as are
shown in Fig. 1.

As shown in Fig. 10, the ridges detected by the hierarchical watershed approach
are largely at the mercy of the fluctuations of the FTLE field. In this example, such
an FTLE fluctuation causes the hierarchical watershed merging to follow the wrong
shorter ridge instead of keeping the correct longer ridge. This wrong shorter ridge
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is indeed part of the FTLE field and in fact forms a better defined ridge according
to persistence than does the correct ridge, so further work beyond the persistence
measure used by the hierarchical watershed method is needed to eliminate these last
few pathological cases.

6 Conclusions and Further Research

While watershed methods commonly appear in the summaries of ridge exraction
methods for Lagrangian coherent structures, they are often dismissed in favor of
local methods such as marching ridges. We have shown that their results are often
much smoother and less noisy than such local approaches, and should be considered
further.

One of the main shortcomings of the watershed approach is that it does not detect
ridges that end at a minimum. Such an example might be a ridge descending from
the rim to the bottom of a crater. We plan to address such cases with a combination
of local and global combinations, using the local ridge definition evaluated on the
current sea-level coastline front of the V-S watershed method. This combination of
local and global ridge methods could yield the best of both worlds.

We have used a persistence measure as the criterion for hierarchical watershed
method to merge watershed regions based on ridge shallowness. This criterion
works well in many but not all cases, as illustrated in Figure 10. Further analysis
and experimentation will be needed to explore new merging criteria to better pre-
serve the important ridges for LCS visualization.

We also plan to work on high performance streaming implementations of the V-
S and other watershed algorithms, updating earlier such work [13], as we as their
applications to larger, out-of-core datasets.
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