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Abstract

This paper presents the first parallelization of FLANN's
k-d tree for approximate nearest neighbor finding of high
dimensional data. We propose a simple node-parallel
strategy that acheives surprisingly scalable speedups on a
range of inputs and hardware platforms. When combined
with speedups from SIMD vectorization, our approach can
achieve up to 91x total speedup over the existing FLANN
implementation on a 32-core machine.

1. Introduction

The prevalence of digital cameras and Internet image
hosting services, such as flickr, has created an explosion of
online digital imagery, and with it many exciting new ways
to utilize these large image databases. For example, 3-D re-
constructions of the city of Rome have been built by finding
and registering matching elements in the hundreds of thou-
sands of photos on flickr tagged with the keyword “rome”
[1]. Other examples use millions of photographs to perform
scene completion [ 6], recognise panoramas in image col-
lections [0], and infer labels on unknown images given a
collection of labeled images[5].

These techniques are all built around the ability to find
similar images to a given image, based on some kind of
large vector representation of the image. Entire images can
be represented by a low-resolution version of the image [26]
or by a GIST descriptor [24]. Localized regions within an
image can be represented by the concatenation of its under-
lying RGB values or by vectors computed using SIFT [19]
or HOG feature transforms [10]. Similarity between images
or their regions can then be measured by the Euclidean dis-
tance of their vectors.

Hence, finding similar images or parts of images
amounts to solving the nearest neighbor problem: Given
P a set of n k-dimensional data points in R*, construct a
data structure that helps us quickly find the nearest neigh-

bor p* = min,e p d(p, q) to any query point ¢ € R*.

When dealing with high dimensional point data, such
as image and region descriptors, existing nearest neighbor
methods invariably suffer from the curse of dimensional-
ity, which degrades search time to that of a brute force
search. To regain algorithmic efficiency, approximate near-
est neighbor methods find query results within a user spec-
ified error bound of the exact nearest neighbor. This is of-
ten acceptable for image searches since the descriptor vec-
tor distance is not necessarily the “perceptual distance” be-
tween two images or image regions.

The k-d tree[3] is a popular method for finding exact and
approximate nearest neighbors. Its hierarchical data struc-
ture can be constructed in O(nlogn) time and supports
queries in O(logn) time. Once constructed, the nearest
neighbor to a query point can be quickly found by exam-
ining only the data points residing in nearby leaf nodes and
culling entire subtrees that are too far away. By examining
a restricted number of leaf nodes, search is further acceler-
ated, but at the risk of missing the exact nearest neighbor
and being left instead with an approximate one.

While k-d trees speedup an otherwise brute force search,
its construction can still represent a significant bottle-
neck in a variety of applications. Several recent methods
in example-based inpainting [9], super resolution upsam-
pling [15], non-local mean denoising [7], and object detec-
tion [20] must first construct a k-d tree for each received
image in order to facilitate subsequent nearest neighbor
queries into the image. The interactivity of these methods
thus depends very much on how quickly the k-d tree can be
constructed.

The parallelism found in modern multicore CPUs offers
the hope of accelerating k-d tree construction, but is not yet
realized in any existing high dimensional k-d tree imple-
mentations, such as the widely used FLANN (Fast Library
for Approximate Nearest Neighbors) [22] and ANN [21].
The latest version 1.8.0 of FLANN parallelizes across sep-
arate queries and contains a GPU k-d tree builder specifi-
cally for 3-d points, but construction of high dimensional



k-d trees remains single threaded.

We present here the first parallelization of FLANN’s
high dimensional k-d tree builder. This paper is structured
as follows. Section 2 reviews previous methods for paral-
lelizing k-d tree construction. Section 3 describes our node-
parallel strategy and its implementation. Section 4 demon-
strates the scalability of our approach. Section 5 illustrates
the importance of our work in a concrete real world appli-
cation: logo detection.

2. Related Work

Many methods exist for finding nearest neighbors in high
dimensional space, some more useful than others in spe-
cific situations. For example, hashing approaches, such as
locality sensitive hashing (LSH) [11], have been investi-
gated for their theoretical and qualitative benefits though
they can underperform compared to alternatives in practi-
cal situations [23]. Vantage point (VP) tree [29] methods
have been shown to achieve favorable search efficiency on
image patches [18], but may take longer to build than k-d
trees: when partitioning, VP trees must compute full vector
distances to a chosen vantage point, whereas k-d trees split
on an axis aligned plane which requires examining only a
single vector component. A brute force search using the
GPU can find exact nearest neighbors more quickly than a
k-d tree [14], but cannot benefit from the further speedups
enabled by approximate methods. Special purpose meth-
ods such as PatchMatch [2] outperform alternatives on their
special cases (for PatchMatch that of finding similar image
regions). Our work does not claim to be the “size that fits
all,” but instead we accelerate the situations where k-d trees
are most useful.

Deciding on the proper nearest neighbor method for a
given task may require much trial and error. The FLANN
library implements a variety of these methods, while pro-
viding a mechanism for their automatic selection [23]. Our
parallel k-d tree builder can be used as a drop in replace-
ment for FLANN’s k-d tree builder, once again benefitting
the situations where k-d trees are most useful.

Much of the previous work on parallel construction of
k-d trees have focused on low dimensional (3-d) versions,
and focus their parallel performance on the computation of
a surface area heuristic (SAH) over all elements to find the
appropriate position of each splitting plane. For example,
GPU methods for computing SAH k-d trees for accelerating
ray tracing [30, 8, 28] construct the top levels of the tree
in a breadth-first manner that streams through all elements
at each level to compute the best splitting plane positions.
Such an approach would not work well for FLANN-style
computation of approximate nearest neighbors, which uses
a small (e.g. 100-element) subset of points to discover the
dimensions of greatest variance.

3. Method

Briefly, FLANN’s recursive k-d tree construction algo-
rithm proceeds as follows. On each recursive step, the al-
gorithm picks one of the five dimensions with highest vari-
ance, estimated using a random subset (e.g. 100) of the
node’s data points, and splits its data along this dimension
at its mean value, estimated on the same 100 element sub-
set. Random subset selection is achieved by randomizing
the list of vectors just once at the start of build and picking
the first 100 at each recursive step. A node is made a leaf if
it contains exactly one point.

We parallelize computations across nodes by mapping
nodes to parallel rasks and within nodes by vectorizing
its mean and variance estimation steps. Parallel tasks are
spawned dynamically as new child nodes are created, while
a task scheduler (here TBB [17]) takes care of mapping their
executions onto physical cores. Section 3.1 describes the
details of implementing this strategy.

Standard k-d tree builders such as in FLANN expect an
explicit listing of its input vectors. When feature vectors are
defined on overlapping windows in an image (e.g. 32 x 32
patches), explicit listings become especially memory inef-
ficient, as each pixel value is relisted each time it is over-
lapped by a window. For example, a 1024 x 768 RGB
image takes just 2.25MB, whereas an explicitly listing of
its 32 x 32 patches requires up to 2.09GB! Section 3.2 de-
scribes modifications for avoiding this explicit listing, thus
achieving orders of magnitude savings in memory.

3.1. Parallelization and Vectorization

Our implementation leverages two recent advances in
programming tools for utilizing multicore parallelism:

Support for nested task parallelism in the form of li-
braries and language extensions such as TBB, Cilk Plus,
OpenMP and WOOL allow programs to dynamically spawn
tasks and tasks to spawn additional tasks, while a runtime
scheduler, such as[13] [4], takes care of mapping tasks to
physical processors. This style of parallel programming
maps naturally to node parallel k-d tree construction, where
tasks encapsulate the processing of a node and tasks are
spawned when recursing on children nodes.

Auto vectorization capabilities of modern compilers
coupled with preprocessor directives and the restrict
keyword provide an almost effortless way in many cases for
utilizing the wide vector units (now 8-wide) in recent pro-
cessors. In our implementation, we vectorized the mean
and variance computation during tree build and the dis-
tance computations during traversal. Specifically, with the
Intel C++ Compiler (icc), we use the restrict key-
word to assure the compiler that source and target arrays do
not overlap, we added #pragma simd’s before for-loops
and used the —vec—-report2 compiler option to check
whether vectorization took place. Vectorization speedups is



slightly sublinear due to overheads such as moving single
byte chars into 4 byte vector register slots.

We avoid racing on a global random number generator
(RNG) state and suffering the penalties of false sharing, by
using a reentrant RNG. We explicitly pass a RNG state into
each node task, and pass the updated RNG state to the left
child task and an arbitrarily offseted RNG state to the right
child task. In practice, search performance does not degrade
from this pseudo-random hack.

During parallel tree build, all threads will be simultane-
ously making requests to allocate new nodes. To handle this
in a scalable fashion, we use TBB’s scalable allocator.

Computing mean and variance requires scratch space
with size proportional to k. To avoid dynamically allocat-
ing this space for each task, we maintain preallocated per
thread scratch space using TBB’s enumerable thread
specific template.

3.2. Memory Efficient Indexing of Image Patches

The problem at hand is stated in the following general-
ized setting: Given R a raster grid of length d subvectors
v;; € R (Eq. 1), we define the vector v € RM*Nxd a
each M x N window on the raster grid, as the concatenation
of the v; ; subvectors covered by the window (Eq. 2). There
may be multiple R’s of different rectangular shapes, but all
must have the same subvector length d. The goal is then to
constuct a k-d tree on the set of all such v’s without having
to explicit list them but by instead operating directly on the
raster grids.
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To make concrete, for 32 x 32 RGB patches, we have
M = N = 32 and d = 3. When considering the Felzen-
szwalb variant [12] of the HOG feature vector, we have
M = N = 8 and d = 31. In both cases, the plurality of
raster grids may correspond to different images or separate
levels in a pyramid.

We assume in memory the raster grids are laid out in a
single array pyr as the concatenation of the raster grids,
each of which is itself a concatenation of its subvectors in
column major order.

In standard builders, each vector is represented by an
offset into the array of vectors and its i-th component

is indexed by offset + i. When reordering a list of
vectors, such as during partitioning or during the initial ran-
domizing of list ordering, the array of of fset’s is rear-
ranged to avoiding the massive data movement of directly
rearranging the array of vectors.

In our modified builder, in addition to an of £set into
pyr specifying the start of the top left subvector of a win-
dow, we also record for each vector a stride, which is
the number of array elements in a column of subvector in
the level that the vector is in. The index of the i-th com-
ponent of a vector represented by of fset and stride is
then computed in C/C++ as (see Figure 1):

index = offset
+ i/d/Mx*stride 3)
+ i/d%Mx*d
+ i%ad

In practice, one never has to evaluate the full expression
each time a vector component is accessed. During parti-
tioning, when a set of vectors is split along the i-th dimen-
sion, a large portion of the computation in Eq. 3 is constant
across iterations and can thus be moved outside the loop
(Code 1). When computing the mean and variance of a set
of vectors, indexing becomes even simpler, since most com-
ponents in the same vector are in fact contiguous in pyr
(Code 2). We also observed that vectorizing the inner loop
of Code 2 is profitable since the loop usually iterates over
a sufficiently large number of contiguous elements in pyr
(248 for HOGs, 96 for 32 x 32 RGB patches).

It is sometimes useful to consider the set of all unit nor-
malized vectors (i.e. ﬁ), as in [20]. Since each sub-
vector is shared by multiple vectors, the unit length nor-
malization cannot be pre-applied to the subvectors before-
hand. Instead, we can precompute and store per vector “nor-
malization constants” in a separate array and index it with
offset / deachtime a component is accessed and nor-
malize it using the retrieved constant.

4. Results

We evaluated our parallel k-d tree builder by characteriz-
ing its performance on a range of inputs and hardware plat-
forms.

Test inputs. We considered 128-d SIFT keypoint de-
scriptors [19], 384-d GIST image descriptors [24], 1024-d
32 x 32 tiny images, and 4096-d 64 x 64 image patches.
For SIFT, we used the first 0.5M, 1M and 5M SIFT vectors
from cd in Stewenius et al.’s dataset [25]. For GIST and
tiny images, we used the first 0.5M, 1M and 5M GIST vec-
tors and tiny images from the Tiny Images Dataset[26]. For
image patches, we randomly selected two subsets of size
0.1M and 1M from Winder et al.’s dataset [27].

Hardware platforms. Experiments were performed on
a desktop machine representative of a consumer level
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Figure 1. Layout of HOG pyramid in memory. A vector defined on
a 2 x 2 cell window and its array elements in memory are shaded
in gray.

int cl1 =1 / d / M;
int c2 =1 /d%$Mx*d+ 1 %d;
for (int j = 0; J < n; Jj++) {

int idx = offsets[]j] +
cl % strides[j] + c2;
if (pyr[idx] < split_val) {
. // sort left
} else {
. // sort right
}
}

Code 1. Iterating over i-th components of a set of n vectors
specified by arrays of fsets and strides

int idx = offset;
int width = M % d;
for (int j = 0; J < N; J++) {
// following loop can be easily vectorized
for (int 1 = 0; 1 < width; 1++4) {
. // work on pyr[idx + 1]
}
idx += stride;

}

Code 2. Iterating over components of single vector specified by
offset and stride

computer and a high end server machine (Table 1). All
programs were compiled using icc version 12.1.0, with
options ~03 and —~xSSE4.2 on server and —xAVX on
desktop.

Figure 2 compares the single threaded running time
(P = 1) of our parallel builder against FLANN version
1.7.1’s k-d tree builder. FLANN compiled “fresh out of the
box” was not auto-vectorized but was easily modified (Sec-
tion 3.1) to allow for the compiler to do so. Figure 2 shows
the huge speedups achievable by ensuring the compiler in-
deed vectorizes. Unsurpisingly, once vectorized, FLANN’s
k-d tree builder runs at virtually the same speed as our par-

Name Machine description
Intel Core 15-3550 @ 3.30GHz
(4 cores, 8 vector lanes)
16 GB RAM
64-bit Fedora Linux 16, kernel 3.2.9-2
Intel Xeon L7555 @ 1.87 GHz
(4x8 cores, 4 vector lanes, 24 MB L3)
64 GB RAM
64-bit Sci. Linux 6.2, kernel 2.6.32-220

Table 1. Machines used in this work

desktop

server

desktop

B FLANN

M FLANN (vec)
Ours (p=1)

SIFT

HFLANN
M FLANN (vec)
Ours (p=1)

GIST

W FLANN
FLANN (vec)
Ours (p=1)

HFLANN
o 0.1M B FLANN (vec)
% 3.08 Ours (p=1)
5
M

31.024

Figure 2. Comparison of serial k-d tree build times in seconds
achieved by FLANN version 1.7.1 compiled “fresh out of the box,”
a FLANN modified to ensure auto vectorization by the compiler,
and our parallel builder with number of threads set at P = 1.

allel builder at P = 1. This comparison verifies that our
single threaded running time, relative to which subsequent
parallel speedups shall be computed, is indeed competitive.

Figure 3 reports parallel speedups relative to “Ours(P =
1)” in Figure 2. As shown, our parallel k-d tree builder
achieves scalable speedup and tremendous time savings
across all chosen test inputs and hardware platforms. Com-
pared to the non-vectorized “fresh out of the box” FLANN,
our parallel k-d tree builder is up to 91.5x faster (Figure 4).

Not shown in figure 3, is that for smaller input sizes,
we actually experience a slight parallel slow down. This is
probably due to excessive stealing and limited parallelism
in small inputs. But in most use cases this is okay since
small inputs already build in less than a second.
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Figure 3. Absolute k-d tree build time in (top row) and self relative speedup (bottom row) for various input sizes, point dimensions and
machine configurations. From left to right, point data type are SIFT feature descriptors (128-d, uchar), GIST image descriptor (384-d,
float), 32 x 32 tiny images (1024-d, uchar), and 64 x 64 image patches (4096-d, uchar). Data points corresponding to solid lines
were collected on desktop while dashed lines on 1inux-server (see Table 1). Speedup is relative to “Ours” in Figure 2

5. Application: Logo Detection

We examine the benefits of using our parallel k-d tree
builder in a larger application by applying it to the logo de-
tector described in [20], which works as follows. First, a
set of part vectors are trained, each corresponding to a spe-
cific part of a specific logo class. Given a novel image, the
image is then searched for patches whose HOG vector is
sufficiently close in Euclidean Distance to any of the part
vectors. This search can then be performed using either a
k-d tree or any other nearest neighbor method.

We used a 4 x 10 core Intel Xeon E7-4860 machine run-
ning at 2.27 GHz to measure detection time over a range of
core counts. We reimplemented the logo detector in [20]
entirely in C++ and compiled using gcc 4.4.7 with option
—02. Both brute force and k-d tree based logo detection are
parallelized across part vectors and distance computations
vectorized using SSE intrinsics. The unit length normaliza-
tion required in [20] was implemented as described at the
end of Section 3.2. Following [20], we train a set of 512
part vectors. Detection was performed on a 1024 x 768 im-
age from the FlickrLogos32 dataset.

Figure 5 shows detection time with and without a paral-
lelized k-d tree builder. As core count increases, the time
to build a k-d tree serially quickly dominates the overall de-

tection running time, thus limiting further parallel speedups.
And as the easily parallelized brute force detection contin-
ues to scale linearly, the k-d tree detectors advantage over a
brute force detection quickly diminishes and is in fact over-
taken at 32 cores. Thus, as the number of cores increase, a
parallelized k-d tree construction is crucial for helping k-d
tree methods stay competitive with a massively paralleliz-
able brute force method.
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